Hotspot and Silicone Tape

Well, today’s big story is just perfect for PhysicsStop. Cricket meets physics. What more could I ask for.

In case you’ve just arrived from Alpha Centauri,  there have been accusations flying that both English and Australian batsmen have been trying to defeat the ‘Hot Spot‘ detector by putting silicone tape on their bats. The allegations have been vigorously denied from both sides. 

Hot Spot is used as part of a decision review system in professional cricket. The idea is that it will provide evidence as to whether the ball has hit the bat or not when assessing possible dismissals. It uses thermal imaging (infra-red) technology to look for the heat left behind when the ball makes contact with a surface. As the cricket ball just skims the edge of the bat, friction between the two will generate a small amount of heat at the point of contact. The thermal imagers can detect this heat and therefore prove whether the ball hit the bat or not. At least, that is the intention.

So how might silicone tape (a fairly innocuous medical product) give the batsman an advantage? The allegation being made is that a batsman would put tape on the outside edge of the bat, which reduces or eliminates the ‘hot spot’ left by a ball grazing the edge. Presumably they’d leave off the tape from the inside edge, so as to make sure that a fine edge on to their pads gets detected to counter any appeal for leg-before-wicket. (I admit that anyone who doesn’t know cricket will not have a clue what I’m talking about at this point, but hopefully you can still follow the physics part.)

Presumably the thinking is that silicone tape reduces the frictional forces between bat and ball, and therefore reduces the heat generated during a collision between the two. Would it work? One would need to try it out to be sure. But a quick glance at some values for coefficients of friction (e.g. here) will show that there is a vast range of values depending on the two materials. Some combinations surfaces have much more potential for friction (and therefore heating) than others. So it’s plausible that a low friction tape might have the effect. (Though one would think there might be more effective methods – e.g. spraying the edge of the bat with a lubricant spray. The thinking might be that applying tape to a bat is, bizarrely as it might sound,  actually legal in cricket.)

There’s been some discussion on the blogs that it has to do with thermal conductivity, though I’m not convinced by this argument. To defeat Hot Spot in this manner, one would need a material that gets rid of the heat very quickly by spreading it to other areas, so a noticeable hot spot doesn’t persist. The problem is that the thermal diffusivities of everyday materials are too low for this to happen. Thermal diffusivity controls how quickly heat spreads out by conduction. Even the very highly diffusive materials, with thermal diffusivities of around 100 mm2/s or so, would have a spot of heat spread out by only 10 mm in a second (The square-root of the product of thermal diffusivity and time tells you roughly how far heat will spread in that time). The Hot Spot frame rate is much shorter than this so there’s not time for the heat to diffuse away.

But I can think of another mechanism by which the tape might fool Hot Spot. The amount of infra-red light emitted by a surface doesn’t just depend on its temperature. Some surfaces are better emitters than others. A perfect emitter is called a ‘black-body’ in physics. However, be warned – an object that emits infra-red really well doesn’t necessarily look black to the eye – and conversely don’t think that because something is white that it doesn’t emit infra-red well. Some materials have properties that are very dependent on wavelength. It is possible (I don’t know) that silicone tape has a lower emissivity than wood, and therefore the effect, as viewed by an infra-red camera, would be reduced. Possibly it’s a combination of reduced friction and reduced emissivity.

Then again, possibly this is just a media propaganda stunt to try to get some interest back into the last two Ashes tests. (Again, non-cricketers won’t have a clue about that sentence).

All this would make a great student project. I’m sure there’d be physics graduates queuing up to do a PhD in defeating cricket technology. 

 

 

 

Leave a Reply