A light puzzle

Here's a puzzling photograph that Hans Bachor showed me at the end of the NZ Institute of Physics conference last week. It comes from his public lecture on lasers a week ago. And we don't have the answer to it, so maybe you can enlighten us (pun intended). 


The photo is of a demonstration of total internal reflection with a laser. Hans is holding a container of water, which has a small hole at the bottom. Consequently there is a jet of water emerging. A laser is held up to the container, and with careful orientation it can be made to shine down the stream of water. The light follows the water, due to total internal reflection at the boundary between the water and the air (rather like a fibre-optic). Actually, it's not TOTAL internal reflection – if it were we wouldn't see the light escaping from the stream of water, but a great proportion of it is contained within the water stream. 

Now, in this case, Hans didn't quite get the hole the right size and shape. Consequently the stream breaks up into discrete droplets, which you can see in the photograph. Now, here's the puzzle. Look at the droplets and you can see that a couple of them are shining green – i.e. they appear to have laser light in them. 

But how does that work? Light moves so much faster than water one can consider the water to be 'frozen' in space as far as the light is concerned. While the laser light will happily travel along the water stream, when the stream breaks up into drops there is no total internal reflection anymore. The drops should not be glowing. Perhaps the light is jumping from drop to drop to drop. Unlikely – each drop will scatter the light considerably so that very little will jump from one drop to the next – let alone across many drops. 

As you think about this, you should bear in mind the conditions the photograph is taken over. It's a flash photograph, but it's likely that the shutter is open for longer than the flash illuminates the scence. This might (or might not) be significant, since the flash will capture the position of the water stream, but the shutter will still be letting in light from the laser even after the flash has stopped. So the capturing of the 'green' laser light in the photograph is not completely synchronized with the capturing of the rest of the image. 

Our best hypothesis is that the light that is that drops are illuminated directly by light that is emerging from the end of the stream – that is, the light leaves the stream, travels though the air, and hits a drop. In the spirit of Eugenia Etkina's ISLE approach then, are there other hypotheses and what experiments can we formulate to test them?

Leave a Reply

Your email address will not be published. Required fields are marked *